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BREAKUP OF A FREE JET OF A VISCOELASTIC FLUID 

B. M. Khusid UDC 532. 525.2 + 532.135 

A large number of papers has been published on the breakup of a jet of a high-viscosity 
Newtonian liquid flowing in a low-viscosity medium. The results of these papers show that 
there exist three regimes of jet breakup, depending on the flow velocities. At low velocities 
it breaks up under the action of capillary forces, while the long-wave axially symmetric per- 
turbations increase most quickly. 

The nature of perturbation evolution changes with increasing velocity. When the dynamic 
action of the medium exceeds the capillary forces the long-wave bending perturbations increase 
significantly more quickly than the axially symmetric ones. With further velocity increase 
the jet breakup into large parts is changed by spraying into a set of small droplets, the 
size of which is independent of the jet radius. The main purpose of the present work is to 
determine the velocity range in which a jet of a viscoelastic liquid breaks up into large 
parts. 

We investigate the evolution of long-wave perturbations kR ~ I in a circular jet of 
radius R of a viscoelastic liquid of density p, flowing with velocity U in a low-viscosity 
medium of density Po, where k is the perturbation wave number. If for kR ~.i the perturba- 
tion increment increases monotonically with k~ the nature of the breakup is approximated by 
a spray, requiring the study of short-wave asymptotics. The analysis is based on the equa- 
tions derived in [i]. We consider jets undergoing primarily extension or compression. This 
problem was first formulated in [2]. This mathematically insignificant complication of the 
problem makes it possible to estimate qualitatively the effect of a longitudinal strain, 
occurring in a viscoelastic jet, on its stability. We choose the theological equation of a 
Maxwell liquid with viscosity n and relaxation time ~ [3] : T -~ ~(DT/Dt-- W.T q- T-W) n u ~" 
(D.T ~- T.D) = 2ND, where D/Dt is the convective derivative, D is the velocity de-formation 
tensor, W is the vorticity tensor, T is the stress tensor, and e = 0, i, and--I, respectively, 
for the Jaumann, lower, and upper convective derivatives. The Maxwell liquid model is 
the simplest model qualitatively describing many properties of polymer liquids: instantaneous 
elasticity, stress relaxation, difference in normal stresses, etc. [3]. Theequations for the 
additional capillary and hydrodynamic pressures occurring during perturbation of a jet sur- 
face r = R + ~(~, z, t) are taken from [4-6]. The system of equations for small perturba- 
tions is significantly simplified when it is not necessary to take into account the time 
dependence of the longitudinal stress in the jet. This assumption is valid for t/% << i. In 
the absence of longitudinal stress these equations describe the evolution of perturbations 
in a relaxing jet. A solution of the equations is sought in the form exp(ikz + st). The 
system of equations decomposes into separate systems, each of which corresponds to a definite 
perturbation. We provide the equations for the azimuthal dependence of the surface displace- 
ment and the corresponding dispersion equations. The perturbations retaining the jet linear- 
ity are : 
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The bending perturbations ~ = ~e ~* are: 

t+a~-----T},l-- 12 ] + t + a X  

+ k2RS \PARS + 1 + =~ t T ~ ] kt + ax 

k~RZ PCZ2Rs -~ 1 + ~z~ V (k, l)R 2 2-~ PczR2 

0. 
+ q~r  ~ - - 4 ~  ] - ~ a x /  ~ + ~ j  

Here ~ is the surface tension, and Kn( ) is the MacDonald function 

V (k, n) = Po (~z + i~u) s k',~ (~R) ,r 
kR K'~ (k~------B) + - ~  ( t - -  n ~ - -  k~R~). 

The e f f e c t  o f  t h e  s h a p e  o f  t h e  r h e o l o g i c a l  e q u a t i o n  i s  m a n i f e s t e d  on t h e  e q u a t i o n  f o r  t h e  
l o n g i t u d i n a l  s t r e s s  T and t h e  c o e f f i c i e n t s  n~,  ~ ,  ~ ,  and  ~ :  t h e  l o w e r  c o n v e c t i v e  d e r i v a -  
t i v e  n~ = n~ = q/(l -- kr), q~ = q~ = q/(l + 2k/), T = 3~/[(l--kl:)(l + 2xr)], the upper con- 
vective derivative Nx = B~ = ~/(i + XF), ~2 = N~ = q/(i -- 2xr), T = 3nr/[ (1 + ~r) (i -- 2XF) ], 
and the Jaumann derivative ~ = ~ = ~, N2 = ~(i + (3/2)XF), ~ = ~(i- (3/2)LF), T = 
3~ r ( Y is the velocity of primary extension). 

In the long-wave approximation the equations derived coincide: with the Rayleigh equa- 
tions [4] for an ideal liquid and account of capillary forces only; with the Bohr equation 
for stationary perturbations relative to a nozzle in a jet of a viscous liquid flowing from 
an elliptic nozzle (~ = ikU); with the Weber equation [6] for axially symmetric perturbations 
of a viscous liquid jet; and with [2, 7] for axially symmetric perturbations of a viscoelastic 
jet with ~x = ~a = ~. It was suggested in [6] to treat the bending oscillations of a vis- 
cous liquid jet by means of the theory of bending of an elastic beam. Unlike [6], the equa- 
tions for bending perturbations were derived by us directly from the equations of hydrodynam- 
ics. Since the literature does not contain a detailed analysis of bending jet perturbations, 
we describe them in more detail. For J~%[ << i the equations for viscous and viscoelastic 
liquids coincide. Retaining in the dispersion equation the dominant terms in kR, we obtain 

( )[ ( ) ]  [ ( ) '  1 �84 =~ V(k, t) a 2 4a~ ~ " ~ 2a~k 2 a s aM 3 ~ k2R 2 = 0. (1)  
- v ~ - + 3 - ~  + 4  ~-~ + - - f - -  ~2 p~2 + T  

When the viscous forces are small, the dispersion equation acquires the form 

m s ' 2i= Po (poU 2 - ~ / B )  k s = 0 .  
-r  ~ U k  - -  P + Po 

(2) 

Two roots, corresponding to quickly damped perturbations, are lost in this case. A perturba- 

tion growth occurs for p0pU2/(P + P0)~ o/R. We introduce the quantity ~ = P0 1 p0~ R . 

pUR 
, characterizing the relation between hydrodynamic and viscous forces. For $>>i Eq. (2) 

is valid for all kR~l. If 6<<1, Eq. (2) applies only to sufficiently long waves (p/(p + 
po))k3R3<< (8/3):~. For shorter waves (p/(p+ po))k3R 3 >>(4/3)~ the inertial forces are weak: 
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For ~<< i the depedence of the increment Re(a) on kR has a minimum at kR ~ [((p + po)/p)~]~/~ 
The corresponding value is 

Re(~Z)max~ [ (PoU~--~ ] 1/~ 
(P + Po) ~ R~ 

(P ~- PO )L'S We note that for ~ <<3 one can replace Eq. (i) for all kR ~I by 

G., 2 
p T p o  8 p -t- po / P=-Po - -0 .  (4) 

An equation similar to (4), for P0<<P, was derived by a different method in [8]. The 
same result is also obtained by the dispersion equation of [6], if it is taken into account that in this 
case ~ << 3q/pR ~. The calculation of the velocity distribution across the jet gives for 
planar bending perturbations the expression 

' k '  '~:'" k~ ~ --ikxe: v ~ = ~ 0  I-- ~ e~--.~ 2 % 

s i m i l a r l y  to  t h e  d i s p l a c e m e n t  d i s t r i b u t i o n  f o r  p l a n a r  b e n d i n g  o f  an e l a s t i c  b a r .  Thus ,  t h e  
a n a l o g y  s u g g e s t e d  by Weber [6] be tween  a j e t  and an e l a s t i c  beam i s  v a l i d  f o r  (1 + ~o/  
~) ~/z~"/z<< 3. I f  5 >> 1,  t h e  v e l o c i t y  d i s t r i b u t i o n  a c r o s s  t h e  j e t  i s  g i v e n  by t h e  r e l a t i o n  

k ~_ 3~ ~- , k~ z,~ v~" a~.o 1~ 8 - co:-;- -T % -~ ~kxe: , 

and here the Weber analogy does not apply. 

For l a%] >> i the dispersion equation of bending oscillations is given in the following 
form, retaining only the main terms in kR: 

x ~ 2zq 1 2%. (rio -- 'q2 -F "~i) k'R2 4~ a , �9 

z -  )~pR z l]'zk~'-g-~ ZPRZ -~ (~'PR")~ -----O. (5) pC" - -  TU V (k, t) § 

Here y. = ~ + (na/Xp)k 2. 

~, ~_ - Po Uk --  (p0 U'-' ~ T , 2t~ p@p-~ /r 

The perturbation increases for 

PP0 U2 ~ , 
P+P0 >"R-- ~- T #  

For !• 4n~/%P Ra Eq. (5) can be simplified: 

2~rl 4 

k 2 
- - 0 .  ( 6 )  

P +  Po 

Thus, the primary extension increases the jet stability, and a compression lowers it. 
increment values reach a maximum at 

%~]4 P + PO - -  ~ - -  PPO U2 or 
kR = Re (~)rnax = T 

Tl~ ~13 + 

Equation (6) is valid for 

1/2 
2(P'-~-Po) R2TI2(~q3-~--~ ") ~ P o U . , _ _ _  - 

R 

( T<< .8(P+P~ 'qs --F - T /  
~ 2 p  

The 
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112. 
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This inequality is possible only for 4%n4/pR" >> 1. 

For Ix l >> 4qa/%pR ~ Eq. (5) can be written in the form 

Po Uk o , ~ + 2ia ~ - -  po U~ ~ - -  

The perturbations increase for ppoUa/(p + Po) > ~/R + 2~a/X -- T. 
have (2~a/%- T) ~ ~/~. Equation (7) is valid for 

poU ~ - -  o /R  q-- T - -  2~h/~, >> m a x  [4~h(p+po) /@,  (p+Po)R~/~.~ 1. 

It is seen from this inequality that the effect of elastic forces is insignificant in this 
c a s e .  

- -  - -  0 .  ( 7 )  

For all Maxwell liquids we 

A calculation of the velocity field for a relaxing jet of a viscoelastic liquid shows 
that upon satisfaction of the conditions under which the dispersion equation of bending 
perturbation (5) reduces to (6), the analogy between a jet and a viscoelastic beam can be 
used. If the conditions under which (5) reduces to (7) are realized the analogy does not 
apply. 

As is well known [4-6] for a viscous liquid, among the perturbations retaining jet linear- 
ity the axially symmetric ones increase most quickly. A similar result is also obtained for 
a viscoelastic liquid. For [a%[~l the dispersion equations coincide for viscous and visco- 
elastic liquids. Retaining only the main terms in kR, we obtain 

kR K e (kR) k2R 2 kR 
H e r e  s =  2 K' o(kR-------) ~ - ~ l n - ~ -  f o r  k R < < l .  F o r  

[( t + --~- -~- ~ + 2~ (t - k~R ')j >>3kR 

=0. 

(s) 

viscous forces can be neglected: 
112 

[ PPoS_u2 a k 
a = - - i  Uk : : k [  p + p o  s + - ~ ( 1  k ' R  ~) (~)+po,,)L/~ 

If the left-hand side of inequality (8) is significantly smaller than the right-hand side, 
the inertial terms do not have to be included: 

2 posU + ~ (I -- k~R ~) 

= /, 2PosU ] 

For ]~[ >> i we obtain from the dispersion equation for a viscoelastic liquid 

~ ,  [ ppos U~ Ir ~11+2,13 l_ ~ I:~R~)] r/" k 
a = - - i  U k ~ l .  ~ - " 2 Z ' 2"-k (1 (O+Pos) ~/'" 

The perturbations increase for 

9 pp~ 9~s U~ + ~ (1 - -  k~R "2) ~ " - -  ~ '2  

This approximation is applicable if 

po+at)~,R/ + ~_ t'o] > > 1 +  ~. 2 R~ 
2R 3 9 , 3 ] 

and if the following inequality is satisfied for sufficiently short waves: 

(p --i-- po*) 1/2 
k R ~  I . r W ~ ' -  ~  - ~'~ 
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For Maxwell liquids with lower convective, upper convective, and Jaumann derivatives, 
respectively, the quantity (nx + 2na)/X -- T/2 equals: 3n(l -- XF/2)/[X(I -- ks + 2kr)], 
3n(l-- XP/2)/[X • (i + XF)(I -- 2XF)], (3n/k)(l -- XF/2). As is seen from these expressions, 
the effect of primary extension or compression on axially symmetric perturbations reduces 
basically to an increase in the longitudinal viscosity. 

Analysis of the dispersion equations for axiallx symmetric and bending perturbations 
shows the importance of the parameter ~ = (n4X/pR2)~/= for a viscoelastic liquid jet This 
parameter equals the ratio of the distance traversed by a shear wave (propagating with 
velocity (n/p%)~/=[3]) during a relaxation time to the jet radius. A similar quantity, 
called the elasticity number, was derived in [9] by account of the dispersion equation of 
axially symmetric perturbations in a relaxing capillary jet of a Maxwell liquid, obtained 
in [9, i0]. The physical meaning of the parameter ~ and its substantial effect on bending 
perturbations were, however, not considered. 

Consider the breakup of a relaxing jet with Onesorg number Z = ~/0~oR ~i, moving in 
air (P >>Po) with sufficiently high velocity poU= >>d/R. 

The analysis above is valid only for long-wave perturbations kR<<l. To describe the 
dynamics of short wave perturbations~o exp [i(kz + n~) + at], n = 0 -- 3, kR >>i, one can use 
the dispersion equation for planar (since kR >>n) perturbations on the surface of a semi- 
infinite layer of a relaxing viscoelastic liquid. The solution of this problem for a visco- 
elastic liquid is obtained from the corresponding solution for a viscous liquid (see [ii]) 
with the replacement n § n/(l + ~X) [12]: 

[~ 2~}kC ]-~ P"b~k"---~ 4q2k3 []~'~ ~- P ~ ( i  0~/.)] 1!2. (9) 
L " ~,~l~-~>.)J ::: p p2(l./_a~O "~ 

In the case of a viscous liquid relation (9) can also be derived by the limiting transition 
kR>>l in the exact dispersion equation for axially symmetric perturbations of a circular 
jec [ii]. 

We analyze Eq. (9) in more detail than in [12]. For la%l << 1 the equations for viscou~ 
and viscoelastic liquids coincide. For Z~I and l<<kR<<~ the viscous forces are weak: 

~ V [ ( ~ o u  ~ - ~k)/p].k. (10) 
For ~<<kR ~ poU2R/o the inertial forces are weak: 

~ ( P o U 2 - - ~ k ) / 2 ~  �9 (Ii) 

The kR-dependence of the maximum has a maximum at kR % ~. The corresponding value is amax ~ 
poU2/n. For poU=<< q/X the effect of elastic forces is not manifested. For poU=>>n/X Eq. 
(9) also reduces to the two limiting expressions (I0) and (Ii). This, however, occurs in a 
different range of wave numbers. Relation (i0) is valid for l<<kR<<(poU = -- n/%)/(o/R), and 
(ii) for (poU = -- 2n/%)/(o/R)~ kR~poU=R/o. The kR-dependence of the increment has a maxi- 
mun at kR = ~ 2poU=R/(3o). The corresponding value is amax~ (2/3r 

Figures 1 and 2 show schematically the dependence a(kR) for axially symmetric (Fig. i) 
and bending (Fig. 2) perturbations for various values of poU =. The abscissa shows values of 
the aerodynamic pressure poU 2 in the range relevant to the dependenceo~kR). When there exists 
a portion ~>>i/% for a viscoelastic liquid, by the dashed lines we plot the portions of the 
curve a(kR) which differ for a Newtonian liquid with the same viscosity. Figures 1 and 2 
illustrate the effect of viscoelastic forces on breakdown, generated by the aerodynamic ac- 
tion of air. The increments of axially symmetric perturbations for viscous and ideal liquids, 
as well as of bending perturbations for an ideal liquid, were calculated in [4, 14] without 
simplifying approximations. The corresponding curves for various values of the parameters 
were given in [15]. 

For curves 1 and 2 (Fig. i) a%<<l, and the axially symmetric perturbations evolve as 
in the case of a viscous liquid. For curve i, ~<<i, and for kR~2e -z/~2 the inertial forces 
are weak: ~ ~spoU=/3n; for curve 2, $ >>i, and the viscous forces are weak: a ~r 
For curve 3, aX >>i, and the effect of elastic forces is manifested.* Here, however, 

*Similar figures were constructed in [13] for long-wave breakup of a jet. However, maxima 
were erroneously noted on curves 1-3 for kR~l. This is based on replacing the MacDonald 
functions by their first expansion terms for kR< i. The remaining results of [13] are correct. 
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PoU2 >>n/k, and they can be neglected. The dependence ~(kR) of the long-wave breakup, 1--3, 
transform for kR >>i to the corresponding dependences of the short-wave breakup, I and II.* 
Curve I describes expression (i0), and curve II describes expression (Ii). The effect of 
elastic forces (the relation between poU ~ and ~/%) in the short-wave region is mostly mani- 
fested in the wave number regions in which the approximate equations (i0) and (Ii) are valid. 
It is seen from relation (9) (as well as (ii)) that ~(kR) = 0 at kR = poU=R/o (point A on 
Figs. i and 2). Perturbations with shorter waves are damped. 

Comparison of the behavior of viscous and viscoelastic liquids shows that when y<< 1 
and poU2<< ~/% the breakup of a viscous and viscoelastic jet occurs identically. For poU2<< 
~2/pR2 the long-wave bending perturbations with wave numbers kR ~ ~/3, ~ ~ (poU2/~-~)2/3. 
When p2/pR2<< poU2 <<q/X the short-wave length perturbations kR ~ ~, ~ ~ poU2/~ develop more 
quickly. When y >>i the breakups of a viscous and a viscoelastic jet are similar only for 
poU2<<~-~. For /p~ x R~/X~<<poU2 <<q/X long-wave perturbations kR ~ (2poU2X/3n)i/2, 

~ poU2/3npR2/%)~/2 increase more quickly in a viscoelastic jet. Their wavelength is shorter 
than for perturbations with the largest increment for a Newtonian liquid with the same vis- 
cosity. For poU2>> q/~ short-wave perturbations kR~2poU2R/3a,~ ~ 2(poU2/3)s/2/a/po develop 
more quickly in a viscoelastic jet, independently of the quantity y. In a Newtonian liquid 
with similar viscosity the perturbation wavelengths with maximum increment are larger. 

Figure 3 shows the effect of jet velocity on the maximum value of the bending perturba- 
tion increment and the corresponding dimensionless wave number for a jet with parameters: 
p = 1 g/cm 3, Po = i0 -3 g/cm 3, n = i03 Pa.sec, o = 6.10-2(N/m, R = i0 ~2 m. For curves 1 and 
2 % =0.I sec, y = 31.6) for curves 3 and 4 X = 0.03 sec, y = 17.3) curves 5 and 6 are a 
Newtonian liquid, y = 0. The results of calculations, X = i0 "3 sec, y = 3.16 practically 
coincide with curves 5 and 6. As seen from Fig. 3, for low velocities the effect of elastic 
properties is insignificant. The maximum increment value increases with y, and the wave 
number of the corresponding perturbation decreases. Figure 4 illustrates the effect of elas- 
tic properties on the nature of the dispersion curves. For curves 1 and 2 U = 80 m/sec, for 
3 and 4 U = 50 m/sec. The odd numbers correspond to a viscoelastic liquid % = 0.i sec, and 
the even numbers to a Newtonian one. The remaining jet parameters are the same as in Fig. 3. 

The effect of primary jet extension is manifested only on perturbations growing more 

quickly than the liquid relaxes. 

For a jet with u <<i the effect of primary extension basically reduces to a change in 
the viscosity value. For y >>i, along with a variation in the viscosity value the longitu- 
dinal tension decreases the effect of the aerodynamic pressure poU ~ on the development of 
bending perturbations (see Eq. (6)). 

Thus, the comparative analysis performed for viscous and viscoelastic liquids shows that 
the presence of elastic properties, described by the Maxwell model, changes qualitatively the 

nature of jet breakup. 
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